Learning the Probabilistic Structure of Cumulative Phenomena with Suppes-Bayes Causal Networks
نویسندگان
چکیده
One of the critical issues when adopting Bayesian networks (BNs) to model dependencies among random variables is to “learn” their structure, given the huge search space of possible solutions, i.e., all the possible direct acyclic graphs. This is a wellknown NP -hard problem, which is also complicated by known pitfalls such as the issue of I-equivalence among different structures. In this work we restrict the investigations on BN structure learning to a specific class of networks, i.e., those representing the dynamics of phenomena characterized by the monotonic accumulation of events. Such phenomena allow to set specific structural constraints based on Suppes’ theory of probabilistic causation and, accordingly, to define constrained BNs, named Suppes-Bayes Causal Networks (SBCNs). We here investigate the structure learning of SBCNs via extensive simulations with various state-of-the-art search strategies, such as canonical local search techniques and Genetic Algorithms. Among the main results we show that Suppes’ constraints deeply simplify the learning task, by reducing the solution search space and providing a temporal ordering on the variables.
منابع مشابه
Modeling cumulative biological phenomena with Suppes-Bayes causal networks
Several diseases related to cell proliferation are characterized by the accumulation of somatic DNA changes, with respect to wildtype conditions. Cancer and HIV are two common examples of such diseases, where the mutational load in the cancerous/viral population increases over time. In these cases, selective pressures are often observed along with competition, cooperation and parasitism among d...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملEfficient Simulation of Financial Stress Testing Scenarios with Suppes-Bayes Causal Networks
The most recent financial upheavals have cast doubt on the adequacy of some of the conventional quantitative risk management strategies, such as VaR (Value at Risk), in many common situations. Consequently, there has been an increasing need for verisimilar financial stress testings, namely simulating and analyzing financial portfolios in extreme, albeit rare scenarios. Unlike conventional risk ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.03074 شماره
صفحات -
تاریخ انتشار 2017